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ABSTRACT

Forecasting economic variables is crucial for policymakers, researchers, and financial
institutions, since it facilitates informed decision-making and efficient planning. Monetary
Aggregates (M3) are one of these variables that is very important for showing liquidity,
guiding monetary policy, and measuring economic stability. In the literature, numerous
classical and machine learning techniques have been utilized to predict monetary
aggregates. This study utilizes four independent methodologies—Autoregressive
Integrated Moving Average (ARIMA), Autoregressive Fractionally Integrated Moving
Average (ARFIMA), Extreme Learning Machine (ELM), and Multilayer Perceptron
(MLP)—to predict M3 using monthly data. We utilize well-known quality indicators like
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) to rate how well each
model works. The results show that the MLP model always does better than the other
techniques, with the lowest error values in both the training and testing stages. This
shows that MLP neural networks are very good at capturing the nonlinear and
complicated dynamics of monetary aggregates. The results show that machine learning
approaches, especially MLP, could make economic forecasts more accurate and help
make financial and monetary policy decisions based on facts.

Keywords: Financial Time Series, Machine Learning, Multilayer Perception (MLP)
Introduction

Economic factors are the main reason why the global market is growing and stable.
These factors are important for understanding how the economy is doing (Sachs, 2015).
Financial variables like interest rates, exchange rates, stock prices, and commodity prices
are especially important. Changes in these variables have a direct effect on business
decisions, investment choices, and economic policies (Mishkin, 2019). Shiller (2015) said
that it is important to be able to accurately predict these variables because their changes
can have a big effect on people, businesses, and even whole societies.

For example, the investors may suffer financial losses due to inaccurate
predictions of the financial variables, while these inaccurate and unreliable predictions
can undermine the policy makers’ efforts to manage systematic risk and stabilize the
markets (Greenspan, 2007). Therefore, it is a very crucial element of effective decision-
making, comprehensive risk management, and strategic planning to effectively
understand and achieve precise forecasting of financial variables (Soros, 2013).

Historically, to examine and predict the analysts have depended on conventional
statistical models like GARCH (Generalized Autoregressive Conditional Heteroskedasticity)
and ARIMA (Autoregressive Integrated Moving Average). These models often fall short
while dealing with the non-linear structures, dynamics, inherent complexities, and
confused behavior of modern financial data, despite the fact that they provided valuable
insights about linear relationships (Tsay, 2010; Brooks, 2014). Financial markets, having an
impact of a wide range of interconnected variables, like as investor psychology,
geopolitical events, and macroeconomic data, are complicated and dynamic. It is
challenging to predict the financial markets using simple linear models, due to these
interconnected variables (Taleb, 2007).
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The advanced learning models are capable of capturing the hidden patterns and non-
linear relationships in the financial data; therefore, they are becoming popular as
traditional models have limitations (Ahmed, 2023; Cao & Gu, 2020). Long Short-Term
Memory (LSTM) networks and Transformer models have shown better accuracy when
working with time series sequential data, especially when the market is volatile (Chen et
al., 2021). Deep learning models, such as LSTM networks, are good at modeling
sequential data because they can remember things (Chollet, 2017). Conventional neural
networks (CNNs), which were originally used for image recognition (Goh, 2019), can be
used to find patterns in financial time series. The CNN extracts features for the LSTM to
use in its prediction, combining the strengths of several architectures in hybrid models as
the CNN-LSTM (Alonso-Betanzos et al., 2021). These models, by employing more
sophisticated market analysis and risk management techniques, are enhancing financial
predictions.

Previous research using traditional statistical techniques to capture sudden
regime transitions, abrupt market shocks, or long-term relationships has been
constrained since these studies usually assumed linearity and stationarity in financial data.
However, machine learning models are proven to be more effective in managing non-
linearities. Many studies focus on a single model or a specific financial variable, which
makes it difficult to generalize results across diverse markets and time horizons.
Furthermore, comparative analyses are limited, which restricts a comprehensive
understanding of the strengths and weaknesses of different approaches. Therefore,
there is a need for a comparison of traditional and advanced learning models under
multiple evaluation frameworks. The purpose of the study is to compare and explore
both traditional and advanced models for the prediction of financial time series. The
objectives of the study are to (i) evaluate the prediction performance of selected models,
(i) examine their ability to capture non-linear dynamics, and (iii) identify the most
effective model for practical decision-making in finance.

Literature Review

Financial forecasting is evolving significantly advanced technology and a deeper
understanding of market complexities. The review produces key trends from traditional
statistical models to advanced machine learning models, and also identifies critical gaps
that the study aims to address.

Traditional Statistical Approaches and Their Limitations

Historically, traditional econometric and statistical models dominated forecasting and
financial time series analysis. The Autoregressive Integrated Moving Average (ARIMA)
family of models is commonly used to denote linear relationships and trends in data (Tsay,
2010). Similarly, Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
models have been shown to be effective at modeling volatility clustering and
heteroskedasticity, common features of financial data (Brooks, 2014). Despite offering a
strong basis for comprehending market dynamics, these models' underlying assumptions
of stationarity and linearity have turned out to be a major drawback. Now, it is commonly
recognized that financial markets are It is now commonly acknowledged that financial
markets are complicated adaptive systems that affect pricing, including a wide range of
non-linear factors, such as changes in investor sentiment, adjustments to
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macroeconomic policies, and unanticipated geopolitical events (Taleb, 2007). Traditional
models are frequently unable to achieve high forecasting accuracy due to the dynamic,
frequently chaotic, and intrinsic non-linearity of contemporary financial data.

The Rise of Machine Learning and Deep Learning in Finance

In the domains of deep machine learning and deep learning, the constraints of
conventional models have prompted a significant transition towards more versatile and
robust computational frameworks (Ahmed, 2023). Goodfellow et al. (2016) assert that
machine learning algorithms are especially adept at handling the intricate, concealed
structures and non-linear networks characteristic of financial data. Early adopters
effectively used models like Support Vector Machines (SVMs) and Random Forests,
which were better than their statistical predecessors in finding non-linear patterns and
subtle market signals (James et al., 2013).

Deep learning models have changed the field by making it easier to analyze time
series data. Artificial Neural Networks (ANNs) are extensively utilized in finance for
classification and regression tasks due to their ability to handle complex nonlinear
interactions. Specialized models have demonstrated superior proficiency in handling
sequential data. LSTM-type recurrent neural networks are great at finding long-term
relationships in time series data, which is a very important skill for predicting the future
of money (Chollet, 2017). CNNs that were first made to recognize images have been
changed to find important patterns in financial time series by considering the data as a
one-dimensional "image" (Goh, 2019). Hybrid models, such the CNN-LSTM, are providing
a strong synergy for making predictions (Alonso-Betanzos et al., 2021). During times of
high market volatility, Transformer models that use attention processes have shown an
amazing ability to process consecutive data and make big increases in forecasting
accuracy (Chen et al., 2021).

Additionally, through engagement with market dynamics, innovative
methodologies like Reinforcement Learning (RL) are being explored to facilitate an
agent's direct acquisition of optimal trading strategies (Deng, 2023).

The research has conclusively demonstrated the superior efficacy of machine
learning compared to traditional methods in capturing non-linearities; yet, significant
gaps persist. Much existing research is narrowly targeted, utilizing a single model for a
specific financial variable or market, hence constraining the generalizability of their
findings across many financial contexts. Secondly, comparative evaluations of various
forecasting methodologies are frequently constrained by uneven evaluation metrics,
data preprocessing methods, and forecasting timeframes, complicating the ability to do
a thorough and equitable evaluation of the models' respective advantages and
disadvantages. The research lacks a systematic and unified framework for assessing the
performance of classical and contemporary machine learning models across many
financial variables utilizing a consistent set of evaluation criteria. To give researchers and
practitioners useful advice, it is important to lessen these problems.

This study aims to rectify the identified flaws by conducting a systematic and
comprehensive comparative analysis of classical and contemporary machine learning
models. This research will provide a thorough and pragmatic evaluation of the efficacy of
various models by implementing them on diverse financial variables and analyzing their
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performance within a uniform framework utilizing multiple assessment criteria and
forecasting horizons. The findings will validate the superiority of machine learning in
managing non-linearities and will pinpoint the most successful techniques for diverse
financial contexts, consequently improving decision-making, strategic planning, and risk
management in finance.

Methodology

This chapter outlines the existing approaches and the research methodology for
forecasting financial time series. It outlines the data sources and the statistical and
machine learning techniques employed in the research. The analytical approach aims to
identify intricate patterns, improve forecast precision, and establish a solid foundation
for assessing future financial trends. This study employs two conventional statistical
methods and two machine learning techniques to achieve the research aims. The
subsequent section provides a succinct overview of each strategy. Classical methods
typically denote statistical forecasting strategies that depend on historical time-series
data. This study employs two classical methodologies for predicting, which are succinctly
stated as follows.

Box and Jenkins (1970) developed the Autoregressive Integrated Moving Average
(ARIMA) model, a widely utilized method for time series forecasting (Althobaiti, 2025).
Three parameters—p (autoregressive order), d (degree of differencing), and q (moving
average order)—characterize temporal correlations (Mulla et al., 2024). The
autoregressive component addresses historical observations, differencing eliminates
trends and seasonality, and the moving average component manages short-term
dependencies and noise (Arumugam and Natarajan, 2023). ARIMA is a linear combination
of historical data and errors. Mathematically,

(-1-272—— —— J1=B) = +(1-1 + 2 2= ~— ) ©)
Where, t=2,3, n
The backward shift operator is B, and the actual value symbol . They are

important in these formulations is the constant value, represented by the error term
at time t. Using the least squares method, we find the model’s coefficients, and
Furthermore, the model has a systematic way of doing model identification, parameter
estimation, and modeling diagnostics. To make sure the data is correct and strong, you
need to be attentive while using the Akaike Information Criterion (AIC) to choose the
best ARIMA (p, d, q) model. The "auto.arima" function in the R forecasting package is for
the Arima model.

Autoregressive Fractionally Integrated Moving Average (ARFIMA)

The Autoregressive Fractionally Integrated Moving Average (ARFIMA) model
characterizes long-memory processes by allowing fractional values for the differencing
parameter d (Al-Gounmeein and Ismail, 2023). ARFIMA's flexibility enables it to represent
persistent correlations in time series that diminish more gradually than those modeled by
short-memory approaches (Ismail & Al-Gounmeein, 2022). The ARFIMA (p,d,q) model is
effective for time series exhibiting short-term dynamism and long-term dependence. The
Haslett and Raftery (1989) algorithm in R estimates and selects parameters p, d, and q
utilizing statistical estimators. Wang et al. (2023) assert that ARFIMA adheres to the
model identification, estimation, and diagnostic validation procedures of ARIMA,
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although it emphasizes the accurate capture of the fractional differencing parameter to
represent persistent data behavior.

Machine learning methodologies are increasingly prominent in the domain of
predictive analysis. This work employs two distinct machine learning techniques, each of
which is briefly explained below.

Contemporary single-hidden-layer feedforward neural networks (SLFN)
encompass the Extreme Learning Machine (ELM) proposed by Huang et al. (2006). Non-
iterative training characterizes ELM (Izonin et al., 2024). In Extreme Learning Machine
(ELM), input weights and hidden layer biases are randomly assigned and remain constant,
while output weights are determined analytically, thus eliminating the necessity for
iterative parameter adjustment (Vasquez-Coronel et al., 2023). This technique enables
expedited learning and diminished processing costs relative to traditional neural
networks, all while preserving enhanced generalization (Chegni et al., 2022). ELM has
performed exceptionally in time series forecasting, categorization, and regression
(lamsa-At et al., 2024). The mathematical model for an Extreme Learning Machine (ELM)
with K hidden nodes and activation function m(y) is as follows:

=1 ( )= =1 m( ' + )= ?16{1)2’3"")1\/‘} (2)
The weight vector =1[ 1, ..., ] assumes a critical position, representing the
fundamental link between the  hidden node and the input nodes. is the value of the
threshold of the  hidden node,and =[ 1, 5,..., ] representthe weight vector
integrating the hidden and output nodes. However, . represent the inner
product of both ,
H =y (3)
(11+ 1) ( 1+ )
H= (4)
(1 + 1) ( + )l
1
=] 2 (5)
x1
Y1
v V2 (6)
y x1

A sufficiently large number of hidden nodes is typically required to ensure optimal
generalization performance.

Many people use multilayer perceptron (MLP) feed-forward neural networks
(FFNNs), which are made up of many layers of artificial neurons that are connected
(Abiodun et al., 2019). An MLP architecture consists of an input layer, one or more hidden
layers, and an output layer (Oral et al., 2012). A solitary hidden layer is often sufficient for
several applications; however, the unique requirements of the problem dictate the
number of neurons and the depth of the network. The activation functions are chosen to
provide the best performance. The neurons in hidden layers usually use a logistic
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(sigmoid) activation function, while the output layer uses a linear activation function to
make sure that predictions are correct across the goal range (Kangilaski, 2002; Oral et al.,
2012).

This setup lets the hidden layer(s) change and compress inputs so that they can
be mapped linearly in the output layer. There are two parts to MLP training. In the
forward propagation phase, the input layer gets a vector from the training dataset, the
hidden layers look at it, and the output layer makes predictions (Luo et al., 2025).
Backpropagation uses a loss function and gradient descent to figure out the prediction
error and then sends it from the output layer to the hidden layers. To reduce prediction
error, network weights and biases are modified repeatedly (Madhiarasan and Deepa,
2017).

Study Design

This part of our study explains the approach we used to look at how well different
models can predict the Monetary Aggregate (M3). The next steps outline the main parts.
Step 1. Selection and Preprocessing of Monetary Aggregates Indicator

The first step is to choose the monetary variable that is most important to you. In this
case, it is Monetary Aggregates (M3), which shows how much money is in circulation and
how stable the economy is. This indicator was chosen because it demonstrates how the
economy's liquidity changes and how sensitive it is to changes in the macroeconomy. The
dataset contains monthly observations for complete temporal analysis. To ensure
comparability across values and to enhance the performance of forecasting models, the
data was further scaled, which helps mitigate issues of varying magnitudes and improves
the stability and efficiency of the estimation process

Step 2. Forecasting Models

In the second step, distinct forecasting techniques are applied. The rationale for using
machine learning algorithms is due to their ability to capture nonlinear patterns and
complex dependencies in financial time series, whereas statistical models are included to
evaluate performance against simpler, well-established baselines. The detailed
description of these forecasting models is provided in Chapter 3.

Step 3. Training and Testing Phase

In the third step, forecasting is implemented through the training and testing
methodology. The dataset is partitioned into 80% for training and 20% for testing. The
classical and machine learning models are trained using backpropagation, where the
initial network parameters (weights and biases) are adjusted iteratively to minimize
forecasting errors. This phase ensures that the models learn the intrinsic temporal
behavior of M3 and can generalize effectively to unseen data.

Step 4. Selection of the Appropriate Model

The final step focuses on selecting the most suitable forecasting model based on
quantitative performance criteria. In particular, RMSE is employed as the principal metric
for model evaluation. The model yielding the lowest RMSE in both the training and
testing phases is considered optimal for forecasting the future trajectory of Monetary
Aggregates (M3).

Evaluation Measures

To ensure the reliability and accuracy of model selection, two widely used error metrics
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are employed, RMSE and MAE. RMSE quantifies the square root of the average squared
differences between predicted and observed values. On the other hand, explains
prediction accuracy, without unduly penalizing big deviations by measuring the average
magnitude of errors in absolute terms. Together, these metrics offer a balanced
assessment of model performance. Lower values of RMSE and MAE indicate better
predictive capability. In this study, both measures are used to identify the optimal
forecasting model and to assign weights in the ensemble approach. The mathematical
formulation of RMSE is expressed as:

(=)

(7)
== _1C =)l (8)

Where, istheactualand isthe fitted values across models.

Application of Model

The present study focuses on the monetary and financial system of Pakistan, with
particular emphasis on the aggregated money supply indicators published by the State
Bank of Pakistan (SBP). Monetary aggregates, especially M3 and its components, play a
crucial role in understanding the liquidity position, credit availability, and overall financial
stability of the country. These indicators are central to evaluating the effectiveness of
monetary policy, as changes in money supply directly influence inflation, interest rates,
and economic growth. Given their significance, forecasting these aggregates provides
valuable insights for policymakers, financial institutions, and investors. The geographical
scope of the study is national, encompassing all monetary activities within Pakistan’s
formal financial system. The dataset used in this research is sourced from the State Bank
of Pakistan’s Easy Data portal (https://easydata.sbp.org.pk), specifically from the
Monetary Aggregates (M3) — Monthly Profile. The dataset covers the period from Jan
2017 to May 2025, providing almost 9 years of continuous monthly monetary aggregate
data. The values are expressed in million PKR, ensuring consistency across the dataset.
The temporal coverage is continuous every month to provide a reliable forecast, using
classical and machine learning models. Table 1 presents the descriptive statistics of the
Monetary Aggregates (M3). Furthermore, Figure 1 shows the visual representation of
Monetary Aggregates (M3) data.

Results and discussion

Modeling probabilistic and machine learning methods across Monetary Aggregates (M3)
Table 2 presents the comparative performance of the four forecasting models—ARIMA,
ARFIMA, ELM, and MLP—applied to the Monetary Aggregates (M3) time series,
evaluated using RMSE and MAE for both training and testing datasets. For the training
phase, the MLP model achieved the lowest RMSE (0.002741) and MAE (0.001311),
indicating exceptional in-sample accuracy. ARIMA also demonstrated strong training
performance with RMSE of 0.031048 and MAE of 0.019796, closely followed by ELM with
RMSE of 0.031915 and MAE of 0.023444. In contrast, ARFIMA exhibited notably higher
training errors (RMSE = 0.134073, MAE = 0.086287), suggesting weaker in-sample fit. In
the testing phase, which better reflects the models’ generalization capabilities, MLP
again outperformed all counterparts, recording the lowest RMSE (0.131858) among the
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methods, along with an impressively low MAE of 0.189803. ARIMA ranked second in
testing accuracy with RMSE = 0.189803, while ELM showed a moderate decline in
performance (RMSE = 0.332596). ARFIMA performed poorest in the testing stage, with
RMSE reaching 1.304832, highlighting substantial forecasting errors. Overall, the results
clearly indicate that while ARIMA and ELM delivered competitive in-sample accuracy,
their predictive performance in the testing dataset was inferior to MLP. The MLP model
consistently provided the lowest errors across both datasets, confirming its superior
ability to capture the complex nonlinear dynamics in the M3 series.

These findings establish MLP as the most optimal and robust model for
forecasting Monetary Aggregates among the probabilistic and machine learning
methods evaluated. Figure 2 illustrates the actual and fitted behavior of the Monetary
Aggregates (M3) series using four forecasting models: ARIMA, ARFIMA, ELM, and MLP.
In Figure 2a, the ARIMA model demonstrates a close alignment between the actual (blue
line) and fitted (red line) values over the entire study period, with minimal deviations
during most years, although slight underestimations appear in the late 2024 to 2025
period. Figure 2b presents the ARFIMA model, where the fitted series generally follows
the trend of the actual values but exhibits more noticeable discrepancies, particularly at
the beginning of the series (2017-2018) and in the latter portion (2024-2025), reflecting
less stable adaptation to abrupt variations. Figure 2c displays the ELM model, which
produces fitted values that almost perfectly trace the actual series throughout the time
horizon, with only minor deviations in peak points, indicating strong pattern-learning
capability. Finally, Figure 2d shows the MLP model, where the fitted line exhibits an
almost complete overlap with the actual series, both in short-term fluctuations and long-
term growth, suggesting an exceptional ability to capture the nonlinear and complex
structure of the M3 time series. Overall, visual inspection confirms that while ARIMA and
ELM achieve good fits, and ARFIMA maintains a reasonable though less precise match,
the MLP model achieves the closest alignment with actual data, reinforcing its superior
forecasting performance as also supported by the quantitative error metrics.

Analyzing optimal model across Monetary Aggregates (M3) series

Figure 3 presents the combined actual and fitted behavior of the Monetary Aggregates
(M3) series obtained from the four competing forecasting models—ARIMA, ARFIMA,
ELM, and MLP. The actual series (black line) reflects the observed historical pattern,
while the colored lines represent the fitted outputs from each model. Visually, the MLP
model (purple line) demonstrates the closest alignment with the actual data across the
entire period, capturing both the gradual upward trend and short-term fluctuations with
minimal divergence.

The ELM model (green line) similarly closely matches the real series, although it
has a little more trouble picking up local peaks and troughs. ARIMA (blue line) stays on a
mostly correct path, but it does show some tiny changes during the high-growth period
from late 2024 to 2025. ARFIMA (red line), on the other hand, exhibits the most
differences, especially in the first few years (2017-2018) and at turning points. This means
that it is less flexible when it comes to structural changes in the series. The comparative
graphic backs up what we found in the error metrics analysis, showing that MLP not only
has the lowest RMSE and MAE values but also matches the usual behavior of the actual
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M3 dynamics. This shows that it is better at modeling the nonlinear and complicated time
relationships that are common in financial time series data.

Conclusion

This study set out to evaluate the forecasting performance of classical probabilistic and
machine learning methods for Monetary Aggregates (M3). Monetary Aggregates (M3) is
a critical indicator for monetary policy formulation and economic stability. Four models,
such as ARIMA, ARFIMA, ELM, and MLP, are rigorously compared based using widely
recognized error measures, RMSE and MAE, across both training and testing phases. The
results reveal several important insights. While ARIMA and ELM models demonstrated
relatively good in-sample performance, their predictive strength weakened in the testing
phase, indicating limited robustness in capturing future variations. ARFIMA consistently
exhibited the highest forecasting errors, suggesting that its long-memory property did
not adequately align with the underlying structure of M3. In contrast, the MLP model
significantly outperformed its counterparts, achieving the lowest error metrics across
both phases. The close agreement between the MLP forecasts and the actual series
underscores its ability to effectively model both short-term fluctuations and long-term
dynamics in complex monetary data. Beyond the methodological comparisons, the
findings carry notable implications. The superiority of MLP highlights the value of
machine learning techniques in economic and financial forecasting, particularly when
data exhibit nonlinear and evolving patterns that traditional models struggle to capture.
Reliable forecasts of monetary aggregates such as M3 are crucial for central banks and
policymakers in guiding decisions related to inflation targeting, liquidity management,
and financial stability. These findings support the use of neural networks and other
advanced learning architectures in macroeconomic forecasting models.

But the study does have some problems. The study used a singular monetary
aggregate and constrained forecasting models. Future research could enhance this
framework by including machine learning algorithms, hybrid methodologies, or
collaborative procedures, and by applying the study to various economies and financial
metrics. These extensions may elucidate the models' generalizability and resilience
across diverse economic environments. This research shows that the MLP is the best
model for predicting Monetary Aggregates (M3). Its ability to change and provide
accurate predictions makes it a methodological advancement and a useful tool for
policymakers and financial institutions that need reliable estimates to help them plan and
make decisions about the economy.

Table 1. Descriptive statistics of the Monetary Aggregates (M3) monthly profile data

Statistics Value
Mean 8923766
Median 8528901
Variance 7.45E+12
Standard Deviation 2728981
Minimum 5159769
Maximum 15246291
Range 10086522
1st Quartile 6426009
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3rd Quartile 10949009
Interquartile Range 4523000
Skewness 0.462219
Excess Kurtosis -0.89817
Skewness2 0.46675
Excess Kurtosis2 -0.90481

Table 2. Analyzing error metrics to comprehend the best-fit model for forecasting
Monetary Aggregates (M3).

Training Testing
Models RMSE MAE RMSE MAE
ARIMA ARIMA 0.031048 0.019796 0.189803
ARFIMA ARFIMA 0.134073 0.086287 1.304832
ELM ELM 0.031915 0.023444 0.332596
MLP MLP 0.002741 0.001311 0.131858
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Figure 1. Visual representation of Monetry Aggregation (M3) data
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Figure 2. Actual and fitted behavior of the Monetary Aggregates (M3) using classical
and machine learning methods
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Figure 3. Analyzing optimal model for forecasting Monetary Aggregates (M3)
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